アグリサイエンスコース 野菜園芸学研究室

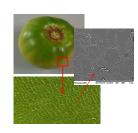
担当:鍋島朋之(助教)

野菜園芸学研究室では、野菜の生理生態(植物がどのように育つか、 どんな条件にどの様に反応するか)に関わる基礎的な研究と共に、生 産上問題となる病害虫の防除や、有用な遺伝子源の探索に関わる応用 的な研究を行っています。以下では、本研究室の学生が卒業研究とし て取り組んでいるテーマの一部を紹介します。 構成員(R2年7月) 教員2名 博士後期課程 1名 修士課程 1名 学部4年生 3名 学部3年生 4名 留学生(タイ2名) 共同研究員 1名

トマト有用遺伝子源の探索

トマトを人工光を使って24時間日長(夜が無い)で育てると、著で育なり、著になり、著りたの方が落ちます。しかし、野した日長を長くしたる種があります。このようなで、植物工場のようなすることで、植物工場のよ種を作りと考えています。

ニンニクの品種改良



ウイロイドワクチンの開発

植物も人間と同じように病気にかかります。この中には、ウイル感のような病原体によるはあります。本研究室ではは呼ばれるものに対して抵抗性を目りつか。では、開発中のに対して明発をしています。写真は、にいるところでは物に接種している。

トマト果実の整理障害

トマトの果実表面に、非常に 微細なひび割れ(マイクロク ラッキング;MC)が生じる ことがあります。MCが生じ たトマトでは水分が失われる ため、棚持ちが悪くなります。 本研究室ではMCと生育条件、 肥料成分などの関わりを調査 しています。

以下では、本研究室所属の学生(当時4年生)がタイに留学して実施した「ケールの水耕栽培」に関する研究の研究成果を纏めて国際 学会で発表した内容を、一部抜粋して紹介します。

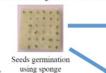
Effect of Different Cultivation on Growth and Yields of Kale (Brassica oleracea var. sabellica)

Ryosuke Hosoi¹, Soraya Ruamrungsri^{2,3}, Chaiartid Inkham³

¹ Faculty of Agriculture, Yamagata University, Tsuruola 997-0037, Japan

² Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand

² Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand


Methods

The experimental design was completely randomized design with 2 treatments, 3 replications and 5 plants per replication.

Measurement

- ·Plant growth
- Plant height, Number of leaves, Photosynthetic rate
- ·Plant yield
- Total fresh weight, Leaves area • Sensory evaluation
- Sensory evaluation
 Flavor, Texture, Color and Appearance, Sweet, Bitter

Evaporative cooling

system greenhous

Hydroponics system (Nutrient Film Technique; NFT)

Soil cultivation system using soil and rice husk

Results and Discussions

Plant height, number of leaves, total fresh weight leaves area, photosynthetic rate grown in hydroponics gained better results than Kale grown in soil-based (Table 1 and Figure 2).

Sensory evaluation were no significant difference found between treatments (Figure 1). Seedling transplantation to soil-based system was slowly growing, resulting in differences in yield and growth.

In hydroponies system, water supply was always sufficient. However, in soil cultivation, it caused short-term water stress, even with adequate water supply. The same happens with nutrients, which makes a difference in yield and growth.

Kale at harvest (7 weeks after transplantation

Table 1. Growth and yield of Kale in each treatment at 7 weeks after transplantation

	Plant height (cm)	No. of leaves	Total Fresh Weight(g)	Leaves area (cm²)
Soil	16.34 ± 0.77 b	10.2 ± 0.73 b	38.48 ± 3.11 b	262.78 ± 22.26 b
Hydroponics	25.98 ± 1.00 a	18.6 ± 0.75 a	255.68 ± 25.79 a	1822.62 ± 112.29 a