【授業の目的】
コンピュータによる数値計算や数値シミュレーションは,電磁界解析,構造解析,熱流体解析,ネットワーク上の通信路解析等に応用され,近年,著しい進歩を遂げている.本講義では,数値シミュレーションの基礎をなす数値解析学を学ぶことになる. 本講義の目的は,数値計算の基礎技術を習得し,さらに,情報処理に関する事象を迅速かつ合理的に数理処理する能力を養うことである. 本講義では,離散情報を用いて1変数関数の関数値およびその微係数,Riemann積分を近似する手法を紹介し,さらに,同手法を用いて常微分方程式の初期値問題を数値的に解く手法を導出する.
【授業の到達目標】
(a) 離散データが与えられたとき,補間関数を構成できる.【技能】 (b) Riemann 可積分関数の数値積分ができる.【知識・理解】 (c) Gauss の消去法を用いて連立1次方程式を解ける.【技能】【知識・理解】 (d) Gauss-Legendre 積分を用いて定積分の近似値が計算できる.【技能】
【授業概要(キーワード)】
誤差論,補間法,数値積分,数値微分,常微分方程式の初期値問題の数値解法
【学生主体型授業(アクティブラーニング)について】
D-1.演習、実習、実験等を行う機会がある。:1~25% D-3.習得した知識を活用する中で、学生自身がテーマや目的などを主体的に定めて課題探究型の演習、実習、実験等を行う機会がある。:1~25%
【科目の位置付け】
この授業は,基盤共通教育科目で培った知識を発展させて情報科学または電気・電子通信工学の応用力や展開力を養うものである(情報・エレクトロニクス学科のカリキュラム・ポリシー(2)).本授業を受講する前に,数学I,数学II,数学IIIを受講しておくことが望ましいが望ましい.
【SDGs(持続可能な開発目標)】
04.質の高い教育をみんなに
【授業計画】
・授業の方法
90分間の授業時間の内,約60分間を講義に費やし,残りの約30分間で具体的な問題演習またはミニテストを行う.
・日程
第1週 序論 - 数値計算の誤差 - 第2~3週 補間法 Part I - Lagrange 補間と Hermite 補間 - 第4週 補間法 Part II - spline 補間 - 第5~6週 連立1次方程式の数値解法 -Gauss の消去法と LU 分解- 第7週 数値積分法 Part I - Newton-Cotes 公式 - 第8~9週 数値積分法 Part II - Richardson 補外と Romberg 積分 - 第10~11週 数値積分法 Part III - 積分精度と Gauss-Legendre 積分 - 第12週~13週 数値微分&常微分方程式の数値解法 第14週 ミニテストの解説 第15週 試験とまとめ
【学習の方法・準備学修に必要な学修時間の目安】
・受講のあり方
スライドで示される講義内容の補足説明を板書で行うので,ノートに筆記して内容の理解に努めることを勧める.
・授業時間外学習(予習・復習)のアドバイス
(a)参考書の該当箇所を前もって熟読することが望ましい. (b)スライド・ファイルをWebClassから入手し,授業時に持参することを勧める. (c)講義ノートとテキストを見ながら,ミニテストの問題が解けるようにすることが望ましい.
【成績の評価】
・基準
到達目標(a),(b),(c),(d)の達成度を評価する.数値解析の基礎的事項について演習問題を解けることを合格の基準とする.
・方法
ミニテスト(14回の予定)の成績(50点満点)をx_m,期末試験(100点満点)x_tとするとき,x_m+x_t/2の値で成績を判定する.単位認定は60点以上とする.
【テキスト・参考書】
テキストを特に指定しないが,自習用として次の参考書を挙げておく. 1)洲之内治男著,石渡恵美子改訂:『数値計算』,(サイエンス社,2002) 2)名取 亮著:『数値解析とその応用』,(コロナ社,1990)
【その他】
・学生へのメッセージ
講義内容は高校生程度の数学力があれば十分理解できるが,論理展開を十分に把握するため,毎回必ず講義に出席することが望ましい.また,講義内容を十分に身に付けるため,各自,C 言語等のプログラミング言語を用いてプログラムを書くことにより,アルゴリズムの動作を実感することが望ましい.
・オフィス・アワー
神谷研究室(7号棟3階7-304)において,金曜日午後4時ー午後5時の間に設ける.
|