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FM3CBEHE A Study on the Effectiveness and Applications of Deep Learning in Ultrasonic Imaging

Ultrasonic testing is a non-destructive testing technology that visualizes the intemal state of objects
using the transmission or reflection of sound waves. The transmission method measures the absorpti
on and speed of sound waves that have passed through the object, while the reflection method recei
ves sound waves reflected at the interface between materials with different acoustic impedances. The
se methods are utilized for inspecting the damage states of materials such as wood and concrete, as
well as for medical diagnosis due to the absence of radiation exposure risks. However, ultrasonic im
ages produced by either method sometimes exhibit shape distortions or artifacts, resulting in unclear 1
mages. This is often caused by factors such as noise in the received data, insufficient measurement
points, or the long wavelength of ultrasonic. Although noise filters have been applied to the received
waveforms, it is difficult to solve these problems using signal processing alone.

In this paper, the effects and effectiveness of applying deep learning to both transmission and refle
ction methods in ultrasonic testing are examined through several specific examples. This paper is str
uctured into six chapters.

Chapter 1: Introduction

The introduction describes the research background and objectives. The background section explain
s the major fields where ultrasonic imaging is utilized and highlights issues in conventional technique
s. Additionally, experiments 1 conducted using signal processing based on L1 norm minimization are

also explained.

Chapter 2: Ultrasonic testing and deep leaming techniques

This chapter explains the principles of image reconstruction using ultrasonic measurement and sign
al processing. Furthermore, it details the basic techniques of deep leaming, particularly convolutional
neural networks (CNNs) and generative adversarial networks (GANS) used in this paper.

Chapter 3: Estimation of ultrasonic propagation time using ultrasonic CT and CNN

As an example of applying deep learning to the transmission method, this chapter describes a met
hod for estimating the ultrasonic propagation time (TOF: Time-of-Flight) using 2D CNN from nume
rous waveforms obtained by an ultrasonic CT system. First, waveform data were generated using ult
rasonic propagation simulations with MATLAB's k-Wave Toolbox, and experiments were conducted

to verify the feasibility of TOF estimation using a 2D CNN model. Then, TOF estimation was per
formed using waveform data obtained through ultrasonic propagation simulations and underwater me
asurements. The 2D CNN model was pre-trained with simulation data and fine-tuned with underwat
er experimental data. The TOF estimation results of the 2D CNN model were compared with conve
ntional signal processing methods. Reconstructed images were generated using the TOF values estim
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ated by the 2D CNN and conventional methods, and the images were evaluated using quanfitative
metrics such as PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index).

Chapter 4: Conversion of ultrasonic images to X-ray CT images using pix2pix

As an example of applying deep leaming to the reflection method, this chapter describes a metho
d for converting medical ultrasonic images to X-ray CT-like images using pix2pix. A numerical pha
ntom was created by defining the reflectivity of scatterers based on the brightness values of X-ray C
T images captured in the DICOM (Digital Imaging and Communications in Medicine) format. Ultra
sonic propagation simulations were performed using this numerical phantom and MATLAB's Field I
I simulation tool to generate ultrasonic images corresponding to the same regions as the X-ray CT i
mages. The ultrasonic images generated through simulation were used as input data, and the X-ray
CT images as ground truth to train pix2pix for converting ultrasonic images into X-ray CT-like ima
ges. Additionally, a Transpix2pix model incorporating a Transformer into the pix2pix architecture wa
s developed, and its output images were compared with those generated by pix2pix. The images pro
duced by pix2pix and Transpix2pix were evaluated using PSNR and SSIM, similar to Chapter 3.

Chapter 5: Discussion

This chapter discusses the advantages of deep leaming-based methods over conventional methods,
based on the results obtained in Chapters 3 and 4.

Chapter 6: Conclusion

This chapter summarizes the conclusions of the paper and outlines future challenges. The effective
ness of the proposed methods is reaffirmed, and future research directions are presented.
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